Ultrafast Differential Ion Mobility Spectrometry at Extreme Electric Fields Coupled to Mass Spectrometry

Alexandre A. Shvartsburg,*† Keqi Tang,† Richard D. Smith,† Martin Holden,† Martyn Rush,† Andrew Thompson,* and Danielle Toutoungi†

Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, and Owlstone Ltd, 127 Cambridge Science Park, Cambridge, CB4 0GD, United Kingdom

Microchip-based field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers featuring a grid of 35 μm-wide channels have allowed electric field intensity (E) over 60 kV/cm, or about twice that in previous devices with >0.5 mm gaps. Since the separation speeds scale as E^4 to E^3, these chips filter ions in just ~20 μs (or ~100–10 000 times faster than "macroscopic" designs), although with reduced resolution. Here we report integration of these chips into electrospray ionization (ESI) mass spectrometry, with ESI coupled to FAIMS via a curtain plate/orifice interface with edgewise ion injection into the gap. Adjusting gas flows in the system permits control of ion residence time in FAIMS, which affects resolving power independently of ion desolvation after the ESI source. The results agree with a priori simulations and scaling rules. Applications illustrated include analyses of amino acids and peptides. Because of limited resolving power, the present FAIMS units are more suitable for distinguishing compound classes than individual species. In particular, peptides separate from many other classes, including PEGs that are commonly used, for distinguishing compound classes than individual species. IMS/MS platforms have been commercialized in the past few years, and more MS instruments allow an IMS option. Some systems, such as HDMS Synapt (Waters),2,13 employ conventional IMS meaning that ions are sorted by absolute mobility, K. However, the mobilities for ions in gases depend on the ratio of electric field intensity (E) to the gas number density (N), and the relative deviation (α) from the zero-field mobility $K(0)$ can be expanded in infinite series of even powers1,3 over E/N:

$$K(E/N) = K(0)[1 + \alpha(E/N)] = K(0)[1 + a_1(E/N)^2 + a_2(E/N)^4 + ... + a_n(E/N)^{2n}]$$

The effect is exploited in differential IMS or FAIMS to filter ions by the difference between K at two E/N magnitudes. This is achieved using a periodic time-dependent electric field $E(t)$ with alternating segments of high E and lower E of opposite polarity but null mean E, in which ions drift with velocity proportional to the difference between the α values in these segments. The field is established in a gap between two electrodes through which ions are pulled by gas flow. For any given species, the drift across the gap (that would result in ions neutralized on an electrode) can be offset by motion induced by constant "compensation field" (E_C) added to $E(t)$; scanning E_C produces the FAIMS spectrum.3 The E_C values depend on the $E(t)$ amplitude (the "dispersion field", E_D), and analytes are better characterized by maps3 of E_C versus E_D. The species with equilibrium E_C close to the actual value may still pass the gap because of its finite width, diffusion, and ion–ion interactions, which jointly control the resolution of FAIMS.3

As the values of a function and its derivative are, in principle, independent, FAIMS and conventional IMS separations can be largely orthogonal. This is not the case for conventional IMS and MS, as mobility is proportional to the inverse ion–molecule collision cross section and thus tightly correlated to the ion size and mass. The derivative of $K(E/N)$ is not as closely related to E/N magnitudes. This is achieved using a periodic time-dependent electric field $E(t)$ with alternating segments of high E and lower E of opposite polarity but null mean E, in which ions drift with velocity proportional to the difference between the α values in these segments. The field is established in a gap between two electrodes through which ions are pulled by gas flow. For any given species, the drift across the gap (that would result in ions neutralized on an electrode) can be offset by motion induced by constant "compensation field" (E_C) added to $E(t)$; scanning E_C produces the FAIMS spectrum.3 The E_C values depend on the $E(t)$ amplitude (the "dispersion field", E_D), and analytes are better characterized by maps3 of E_C versus E_D. The species with equilibrium E_C close to the actual value may still pass the gap because of its finite width, diffusion, and ion–ion interactions, which jointly control the resolution of FAIMS.3

the ion mass, and FAIMS and MS dimensions are less correlated and may be near-orthogonal.\(^\text{(3,7)}\) This advantage has stimulated rapid development of the FAIMS/MS technology and its adoption in the quadrupole, ion trap, and orbitrap MS products by Thermo Fisher.\(^\text{(14)}\)

The FAIMS electrodes may be curved (for example, cylindrical or spherical), creating an inhomogeneous electric field that focuses ions, or planar with a homogeneous field and thus no focusing.\(^\text{(3,5,14–16)}\) In the result, a planar FAIMS has advantages over the curved form in terms of resolution and the inherent resolution/sensitivity balance, quantification accuracy, and duty cycle for broad analyses,\(^\text{(16)}\) and current FAIMS\(^\text{(7,16)}\) and GC/FAIMS\(^\text{(20,29)}\) instruments use planar FAIMS designs. However, commercial FAIMS/MS systems have employed cylindrical FAIMS, where the focusing and geometry allow the ion beam to be constrained and effectively extracted through a small circular orifice.\(^\text{(5)}\) This permits ready coupling to MS, whereas diffuse ion beams in previous planar FAIMS systems could not be transmitted through standard MS inlets without huge losses. The slit-aperture inlets provide major improvement, but losses remain.\(^\text{(16,21,22)}\)

FAIMS analyses using “macroscopic” devices with a gap width (\(g\)) of 0.5–2.5 mm (for any geometry) had required a minimum ion residence time of \(t \sim 1–200\) ms at a given \(E_C\) and thus \(\sim 0.1–30\) s for a full \(E_C\) scan. This has limited the utility of inserting FAIMS between liquid-phase separations such as liquid chromatography (LC) or capillary electrophoresis (CE) and MS, where several FAIMS scans should generally be acquired during the elution of a single LC or CE feature. To accomplish that in conjunction with regular LC,\(^\text{(23,24)}\) scanning \(E_C\) was replaced by stepping in large increments, which has compressed the FAIMS cycle but dropped the resolution below that obtainable, thus reducing the gain from FAIMS filtering. The best FAIMS specificity is provided by \(E_C; E_D\) maps, but those take at least an order of magnitude longer time to collect than a single \(E_C\) scan and thus were incompatible with online LC/MS analyses.

In general, the \(E_D\) value in FAIMS is capped by the lower of (i) the onset of the destruction of ions due to field heating;\(^\text{(25–27)}\) (ii) hardware constraints on the voltage that creates the waveform, and (iii) the threshold for electrical breakdown of the gas. While the limit (i) is fundamental, (ii) and (iii) are engineering factors. According to the Paschen law,\(^\text{(28)}\) (iii) depends on the gas pressure and gap width and can be lifted by reducing either, though narrowing the gap is more effective.\(^\text{(27)}\) The recently developed FAIMS microchips\(^\text{(27)}\) with \(g = 35 \mu\text{m}\) permit \(E_D\) to be raised from \(\sim 20\) to 30 kV/cm in previous macro units to >60 kV/cm. Since the separation speed scales as the \(\text{fourth to sixth power of } E_D\), this increase would accelerate the separation at equal resolving power (\(R\)) by over an order of magnitude.\(^\text{(27)}\) Present chips have lower \(R\) than previous FAIMS devices, but filter ions in just \(\sim 20\) ms, or \(\sim 10^{2–10}\) times faster. For effective transmission of high ion currents, the chips feature multiple parallel gaps. The performance of stand-alone FAIMS analyzers based on these chips has been evaluated for small ions generated by \(\beta\)-radiation sources and found in agreement with first-principles calculations.\(^\text{(27)}\)

Here, we report the integration of multichannel FAIMS chips using extreme fields with MS and ESI sources, which extends exceptionally fast FAIMS/MS analyses to a broad range of complex samples, including biological ions.

EXPERIMENTAL METHODS

The ESI process generates clustered ions that must be desolvated prior to FAIMS, for example using a gas counter flow in a curtain plate/orifice interface.\(^\text{(5,14,16)}\) Here, such an interface is built in front of the PEEK plate holding the FAIMS chip. The circular apertures in the curtain and orifice plates have diameters of 3.2 and 2.0 mm, respectively. Those values keep close to the ratio of 5.3 used in previous ESI/FAIMS interfaces,\(^\text{(16)}\) but are larger by \(\sim 30\%\) to maximize ion transmission into the chip that has a large acceptance area (3.25 × 2.5 mm).\(^\text{(27)}\) The ESI source is an emitter positioned a few mm away from the curtain plate aperture, with the distance and angle adjusted to optimize the ion signal. The \((\text{N}_2)\) carrier gas flows to the interface at \(Q_{\text{in}} = 0–3.2\) L/min and parts into two streams, one leaving through the aperture in the curtain plate and the other carrying ions via the aperture in the orifice plate into the chip (Figure 1). Unlike previous

designs where the curtain and orifice plates were parallel to the FAIMS gap and desolvated ions entered the gap through one of the electrodes, here the plates are perpendicular to the gap and ions enter it edgewise. This allows in-line processing of ion beams without bending, which should reduce losses in the ESI/FAIMS interface.

All ESI/MS interfaces employ the above curtain plate/orifice concept or a capillary where traversing ions are thermally desolvated. As with other FAIMS analyzers to date, the present chip is coupled to a commercial MS platform with capillary inlet, here the LTQ ion trap (Thermo Fisher). Since ions exiting FAIMS were already desolvated in the ESI/FAIMS interface and/or upon injection into FAIMS by field heating, the capillary is held at 70 °C. The plate holding the chip is housed in a vacuum-tight chamber sealed to the inlet, with an air gap to the capillary of 1.1 mm. The chamber is evacuated by a rotary vane pump (Rietschle Thomas G045) at a flow of $Q_{\text{out}} = 0-3.2$ L/min, measured to ∼1.5% error by a mass flow controller. The flow through the capillary (i.d. = 0.5 mm) is $Q_{\text{ms}} \sim 0.8$ L/min, hence the flow through the chip is (Figure 1)

$$Q = Q_{\text{out}} + Q_{\text{ms}}$$ \hspace{1cm} (2)

which ranges from ∼0.8 to ∼4 L/min, and the outflow through curtain plate is

$$Q_{\text{cu}} = Q_{\text{in}} - Q = Q_{\text{in}} - Q_{\text{out}} - Q_{\text{ms}}$$ \hspace{1cm} (3)

The mean ion residence time in a gap of volume V equals

$$t \sim 0.7V/Q$$ \hspace{1cm} (4)

The coefficient 0.7 reflects that the ions selected by FAIMS have mainly passed near the gap median, where the flow is faster than the average over the gap. With $V = 1.2$ mm3 for these chips, t ranges from ∼63 to ∼13 µs. Hence all flows in the system and the FAIMS separation time and extent of ion desolvation in front can be independently controlled by varying Q_{in} and Q_{out}.

In operation, the MS inlet is grounded. For cations, the other voltages (relative to ground) are 30 V on the chip, 50 V on the orifice plate, and 0−2 kV on the curtain plate. The ESI emitter is biased at ∼1−3 kV above the curtain plate. For anions, the values become negative. The sample is infused to the emitter by a syringe pump at a flow rate of 0.5 µL/min. The ion trap was scanned in MS mode over the m/z range of 150−2000 in ∼110 ms, using the AGC target value of 3×10^4 and maximum ion injection time of 10 ms. The size of the chip housing in the FAIMS/MS configuration has required lengthening the electric leads of waveform power supply compared to the stand-alone FAIMS, which has increased the circuit capacitance and thus lowered the waveform frequency from 28.5 to 22.2 MHz.

The charge detector after the chip is not biased so as to pass most ions to MS, but some ions still reach it and one can monitor the FAIMS spectra while acquiring the FAIMS/MS data. The ion losses due to the FAIMS stage were measured by comparing the ion counts for some analytes in the ESI/MS and ESI/FAIMS/MS configurations. As expected, the transmission increases for larger ions with lower mobility and diffusion coefficients, but is ∼10−20% for medium-size species relevant to biological analyses as exemplified below. These values are less than those calculated for the chip proper, suggesting significant losses in the FAIMS interfaces. Optimization of those interfaces to improve the ion utilization is in progress.

The system was evaluated in the cation mode using the ∼1 µM solutions of reserpine (a prevalent MS standard), amino acid leucine, or a mixture of four peptides (bradykinin (1060 Da), angiotensin I (1296 Da), fibrinopeptide a (1536 Da), and neurotensin (1672 Da)) in 50:49:1 water/methanol/acetic acid. In some experiments, to emulate a realistic matrix, lab wastewater containing complex proteome digests, other accidental pollutants, and (optionally) a customary MS calibrant polyethylene glycol (PEG) was added to the sample.

RESULTS

Demonstration of FAIMS/MS Analyses. The operation of the FAIMS stage in the ESI/FAIMS/MS system was optimized using reserpine solutions, with protonated reserpine ($m/z = 609$) dominating the ion flux (Figure 2a). The signal for this species improved with increasing curtain plate voltage U_C until the saturation at ∼1.2 kV (Figure 2b), and we adopted that value.

The peaks for (H$^+$)reserpine move to higher E_C/N at greater E_D, reaching 1.1 Td at the maximum $E_D/N = 250$ Td (Figure 2c). With $E_D > 0$, a positive E_C that rises at higher E_D means a mobility decreasing with increasing field. This classifies the ion as “type C” in line with previous data at absolute $E_D/N < 80$ Td, where $|E_C/N|$ was under 0.06 Td. Appropriately for planar gaps, the peak width (w for fwhm) is independent of E_D within 5% (Figure 2d). As reducing suction after the chip extends the separation time, the peak narrows from $w = 0.8$ Td at $Q_{\text{out}} = 2.5$ L/min (where $t \sim 15$ µs) to 0.5 Td at $Q_{\text{out}} = 0.7$ L/min and $t \sim 34$ µs (Figure 2e). This trend matches the simulations assuming the measured $K_0 = 0.73$ cm2/Vs and is close to the predicted32 scaling of resolving power of planar FAIMS as $U^{1/2}$ (Figure 2f). These results evidence that FAIMS microchips can be coupled to mass spectrometry effectively and that existing models adequately describe the separations in that arrangement.

To illustrate separation of different species and chemical noise removal in realistic samples, we analyzed a solution of leucine (Leu) with added wastewater. Positive-mode ESI frequently be coupled to mass spectrometry effectively and that existing models adequately describe the separations in that arrangement.

3a). The FAIMS spectra obtained at and near the maximum E_D/N exhibit two peaks (Figure 3b): one (at lower E_C/N) heavily enriched in H$^+$Leu and the other comprising H$^+$(Leu_2) and almost all other ions (Figure 3c). Thus FAIMS filtering raises the s/n ratio for H$^+$Leu (with noise summed over the full m/z range) by ~ 20 times.

In previous FAIMS analyses34,35 at $E_D/N < \sim 80$ Td, the H$^+$Leu displayed "type A" behavior where mobility rises in stronger fields, leading to $E_C < 0$ that decreases at higher E_D.

Here, at $E_D/N = 225 - 250$ Td, we find $E_C = (0.1 - 0.4)$ Td > 0 that increases at higher E_D (Figure 3b), indicating a type C species. This transition is similar to that observed for DMMP cations and DNT anions in stand-alone FAIMS,27 but here both coefficients a_1 and a_2 fit to the data at $E_D/N < 80$ Td are positive35 and hence the decrease of K at higher E_D/N must be due to negative a_n for $n = 3$ or greater. Such conversion to type C at sufficiently high $|E_D/N|$ is universal for type A ions: with increasing energy, the ion–molecule collisions always transition from sampling the potential well to hard scattering on the repulsive wall that is manifested as the type C behavior.3,36

Peptide Separations. The introduction of FAIMS into the LC/ESI/MS pipeline has largely been motivated by the need for high-throughput analyses of complex peptide mixtures and low-level detection of target components,23 and bottom-up proteomics is a topical area of FAIMS application.11,23,24 Tryptic peptide ions

generated by ESI have typical charge states (z) of 1–4. In the previous FAIMS studies using N2 at |E0/N| ~ 80 Td, those ions behaved as type C with |EC/N| in the ~0.04–0.4 Td range. As |EC| values generally increased for higher z, FAIMS has roughly fractionated electrospayed digests by resolution is too high to pass all or most peptides together.

The tailing toward higher EC of both peaks seems due to ion–molecule clustering that results from penetration of ESI solvent vapors into FAIMS, and can be suppressed with better desolvation. Importantly, the major conformers of N2 and B2 are now separated near the baseline (Figure 5b). The intensity of B2 relative to N2 drops in longer analyses because B2 ions have higher mobility and thus are eliminated from the gap by diffusion faster.

At |E0/N| ~ 80 Td, the |EC| values are statistically higher for peptides with z = 3 than z = 2. Here, the peak for angiotensin 3+ (A3) has somewhat greater EC than B2 or other
peptides measured, Figure 5b. The relative position of N2, B2, and A3 features tracks that in macro-FAIMS with \(t \sim 100 \) ms (Figure 5c), which makes sense for species that are type C already at the smaller \(E_D/N \). The peaks are broader in Figure 5b than in Figure 5c by \(\sim 50 \) times, in line with the prediction upon the acceleration of analysis by \(\sim 2700 \) times (based on \(R \) for planar FAIMS scaling\(^{31} \) as \(t^{1/2} \)). Had the peak capacity dropped by \(\sim 50 \) times, there would be no noticeable separation in the chip, but the actual difference is \(\sim 4 \) times only. The gain by \(\sim 13 \) times over the \(t^{1/2} \) scaling law reflects a similar increase of \(|E_C/N| \) values (from 0.12 – 0.18 Td in Figure 5c to 1.7 – 2.5 Td here) and thus of the separation space width that results from higher \(E_D/N \) in microchips.

CONCLUSIONS

Multichannel FAIMS microchips, which permit maximum electric fields (\(E_D \)) \(> 60 \) kV/cm and filter ions in \(\sim 20 \) µs, were coupled to an ESI source (using a curtain plate/orifice interface with ions injected into the edge of analytical gap) and mass spectrometry. An ion trap MS was used, but any MS platform can be employed. The new ESI/FAIMS/MS system was evaluated for analyses of small ions, amino acids, and peptides, including realistic samples with extensive chemical noise.

Tuning of gas flows in the front and rear FAIMS interfaces permits independent control of the separation time \(t \) (that determines the balance between sensitivity and resolving power \(R \)) and ion desolvation prior to FAIMS. The measured dependences of \(R \) on \(t \) and of the separation parameters on \(E_D \) match the established scaling laws and a priori simulations of ion dynamics including anisotropic diffusion, showing that known FAIMS theory applies at extreme fields. Despite a lower resolving power compared to FAIMS devices with macroscopic gaps, the present chips are able to filter an amino acid from a complex matrix. Perhaps of more utility is the collective separation of peptide ions from common contaminants in the same \(m/z \) range (e.g., PEGs). Resolving different peptides is challenging, but may be possible even for those of same charge state. The separation power of macro-FAIMS is often improved by the optimization of gas composition\(^{16,37,45} \), including the use of mixtures such as He/N\(_2\), and/or heating the gas\(^{14} \), which reduces its number density \(N \) and thus increases \(E/N \) in proportion to the temperature \(T \). The benefits of these approaches for FAIMS chips are being explored. Still, the resolving power of FAIMS chips would likely remain below the maximum provided by units with macroscopic gaps and extended separation time\(^{15} \), rendering these chips most useful for rapid selection of compound classes rather than best differentiation of specific ions.

A lower instrumental resolving power does not necessarily translate into lower resolution in practical analyses constrained by separation time. For example, the peak capacity of macro-FAIMS for tryptic peptides is \(\sim 15 \), yet the actual separations used only 3–5 steps because the \(E_C \) spectrum had to be obtained during the elution of single LC peak\(^{23,24} \). Thus the effective peak capacity was just 3–5, which is close to that of the present chip.

At higher \(E_D \), the ion–molecule collisions gain energy and thus increasingly involve bouncing off the repulsive wall of the potential surface rather than sampling its well. This change converts many light ions that in previous FAIMS analyses behaved as type A (for which mobility increases in stronger fields) to type C (mobility decreases in stronger fields).

The ultrafast FAIMS/MS capability is expected to open new applications and facilitate high-throughput analyses. From the fundamental perspective, the present development allows the FAIMS characterization of transport properties and ion–molecule potentials for mass-selected ions to be extended to a hitherto inaccessible region.

ACKNOWLEDGMENT

Portions of this work were supported by the Battelle Independent R&D program and the NIH National Center for Research Resources. We thank Dr. Erin S. Baker for her peptide samples.

Received for review July 4, 2009. Accepted August 15, 2009.

AC901479E